Peptide dendrimer-Doxorubicin conjugate-based nanoparticles as an enzyme-responsive drug delivery system for cancer therapy.
نویسندگان
چکیده
Peptide dendrimers have shown promise as an attractive platform for drug delivery. In this study, mPEGylated peptide dendrimer-doxorubicin (dendrimer-DOX) conjugate-based nanoparticle is prepared and characterized as an enzyme-responsive drug delivery vehicle. The drug DOX is conjugated to the periphery of dendrimer via an enzyme-responsive tetra-peptide linker Gly-Phe-Leu-Gly (GFLG). The dendrimer-DOX conjugate can self-assemble into nanoparticle, which is confirmed by dynamic light scattering, scanning electron microscopy, and transmission electron microscopy studies. At equal dose, mPEGylated dendrimer-DOX conjugate-based nanoparticle results in significantly high antitumor activity, and induces apoptosis on the 4T1 breast tumor model due to the evidences from tumor growth curves, an immunohistochemical analysis, and a histological assessment. The in vivo toxicity evaluation demonstrates that nanoparticle substantially avoids DOX-related toxicities and presents good biosafety without obvious side effects to normal organs of both tumor-bearing and healthy mice as measured by body weight shift, blood routine test, and a histological analysis. Thus, the mPEGylated peptide dendrimer-DOX conjugate-based nanoparticle may be a potential nanoscale drug delivery vehicle for the breast cancer therapy.
منابع مشابه
Enzyme-responsive doxorubicin release from dendrimer nanoparticles for anticancer drug delivery
BACKGROUND Since cancer cells are normally over-expressed cathepsin B, we synthesized dendrimer-methoxy poly(ethylene glycol) (MPEG)-doxorubicin (DOX) conjugates using a cathepsin B-cleavable peptide for anticancer drug targeting. METHODS Gly-Phe-Leu-Gly peptide was conjugated with the carboxylic acid end groups of a dendrimer, which was then conjugated with MPEG amine and doxorubicin by aid ...
متن کاملEffect of Peptide Derived from Scorpion Toxin on Enhanced Permeability of Doxorubicin Conjugated Gold Nanoparticles in HeLa and MDA-MB-231 Cells
Background: Cell penetrating peptides (CPPs) can enter a cell through the cell membrane, and used in the fields of drug delivery, gene therapy, and cancer therapy by their property transporting various molecules into cytoplasm. Gold nanospheres (GNSs) are a useful tool for molecular imaging, because they are not cytotoxic and have high solubility, excellent light scattering property and ease of...
متن کاملEnzyme-responsive multifunctional magnetic nanoparticles for tumor intracellular drug delivery and imaging.
Enzyme-responsive, hybrid, magnetic silica nanoparticles have been employed for multifunctional applications in selective drug delivery and intracellular tumor imaging. In this study, doxorubicin (Dox)-conjugated, enzyme-cleavable peptide precursors were covalently tethered onto the surface of uniform silica-coated magnetic nanoparticles through click chemistry. This enzyme-responsive nanoparti...
متن کاملPolymeric composite membranes for temperature and pH-responsive delivery of doxorubicin hydrochloride
Objective(s): Nowadays hydrogels are one of the upcoming classes of polymer-based controlled-release drug delivery systems. Temperature and pH-responsive delivery systems have drawn much attention because some diseases reveal themselves by a change in temperature and/or pH. The objective of this work is to prepare and characterize composite membrane using responsive nanoparticles into a polymer...
متن کاملSRL-coated PAMAM dendrimer nano-carrier for targeted gene delivery to the glioma cells and competitive inhibition by lactoferrin
Glioma, as a primary tumor of central nervous system, is the main cause of death in patients with brain cancer. Therefore, development of an efficient strategy for treatment of glioma is worthy. The aim of the current study was to develop a SRL peptide-coated dendrimer as a novel dual gene delivery system for targeting the LRP receptor, an up-regulated gene in both BBB and glioma cells. To perf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Advanced healthcare materials
دوره 3 8 شماره
صفحات -
تاریخ انتشار 2014